Influence of suspended sediment on the transport processes of nonlinear reactive substances in turbulent streams

Author:

REVELLI R.,RIDOLFI L.

Abstract

The fluid dynamic behaviour of a reactive chemical in a stream can be greatly influenced by the presence of sorbing suspended particles. In this case, a kinetically controlled mass transfer is established between sorbed and dissolved phases and complex interactions emerge between fluid dynamical transport processes, sorption–desorption kinetics and chemical reactions. These conditions often occur in rivers, where both suspended sediment and reactive substances are frequently present. This paper deals with the important case in which the chemical reactions are nonlinear decay phenomena that often affect chemical or biological substances. A vertical two-dimensional mathematical model is formulated to take into account advection, turbulent diffusion, particle sedimentation, exchange kinetics between sorbed and dissolved phases, and decay. The decay is modelled for the case in which two different nonlinear decay reactions affect the dissolved and sorbed phases. The main result of the work is to obtain analytically a one-dimensional differential model of the vertically averaged concentration of the dissolved phase, this being conceptually similar to the classical advection–dispersion–decay equation. However, in this case we include the effects of (i) the kinetics with the phase sorbed by suspended particles and (ii) the influence of the two different decay processes. For this purpose, the multiple-scale method of homogenization is applied to the two-dimensional model. The resultant one-dimensional differential model shows how suspended load and decay phenomena affect the pollutant transport mechanisms to a great extent in a non-intuitive way and that the links are nonlinear. Some quantitative results show that these influences are, in general, not negligible.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3