Effect of cadmium sorption by river sediments on longitudinal dispersion

Author:

Nasrabadi Mohsen1ORCID,Mazdeh Ali Mahdavi2ORCID,Omid Mohammad Hossein3

Affiliation:

1. Department of Water Science and Engineering, Arak University, Karbala Square, Arak 31587-77871, Iran

2. Department of Water Engineering, Imam Khomeini International University, International University Blvd., Qazvin 34149-16818, Iran

3. Department of Irrigation and Reclamation Engineering, University of Tehran, Daneshkadeh Street, Karaj 31587-77871, Iran

Abstract

Abstract This paper concerns the cadmium sorptive effects by river bed sediments on longitudinal dispersion coefficient in an open-channel flow via experimental and numerical study. For this purpose, a circular flume was used with mean diameter of 1.6 m and a width of 0.2 m. The adsorbing bed was considered as a thin layer of the sediment particles with mean diameter of 0.53 mm and three sediment concentrations of 3, 12, and 20 gr/lit. To determine the sorption parameters of the sediments, some experiments were conducted with three cadmium concentrations of 150, 460, and 770 ppb. Then, the dispersion experiments were carried out with and without the bed sediments with the same cadmium concentration as the sorption experiments. A numerical model was then developed to solve the advection–dispersion equation with considering the sorption term by river bed sediments. The longitudinal dispersion coefficients were estimated by comparing the experimental and numerical breakthrough curves. The results showed that, with increasing the sediment concentrations, the sediment sorption rate increased and the longitudinal dispersion coefficient decreased by about 38, 36 and 33 percent, respectively, for cadmium concentrations of 150, 460 and 770 ppb. In addition, by increasing the cadmium concentrations, the changes in the longitudinal dispersion coefficient are decreased. Furthermore, a relationship was developed using non-dimensional longitudinal dispersion as a function of the new parameter of sorption ratio. From a practical point of view, the results of this study demonstrated that, at the presence of riverbed sediment, the cadmium is longitudinally dispersed with more delay in comparison with no sediment at the river bed.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3