Surface wave mode interactions: effects of symmetry and degeneracy

Author:

Simonelli F.,Gollub J. P.

Abstract

Parametrically excited surface wave modes on a fluid layer driven by vertical forcing can interact with each other when more than one spatial mode is excited. We have investigated the dynamics of the interaction of two modes that are degenerate in a square layer, but non-degenerate in a rectangular one. Novel experimental techniques were developed for this purpose, including the real-time measurement of all relevant slowly varying mode amplitudes, investigation of the phase-space structure by means of transient studies starting from a variety of initial conditions, and automated determination of stability boundaries as a function of driving amplitude and frequency. These methods allowed both stable and unstable fixed points (sinks, sources, and saddles) to be determined, and the nature of the bifurcation sequences to be clearly established. In most of the dynamical regimes, multiple attractors and repellers (up to 16) were found, including both pure and mixed modes. We found that the symmetry of the fluid cell has dramatic effects on the dynamics. The fully degenerate case (square cell) yields no time-dependent patterns, and is qualitatively understood in terms of third-order amplitude equations whose basic structure follows from symmetry arguments. In a slightly rectangular cell, where the two modes are separated in frequency by a small amount (about 1%), mode competition produces both periodic and chaotic states organized around unstable pure and mixed-state fixed points.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 141 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3