Direct numerical simulation of heat transfer from the stagnation region of a heated cylinder affected by an impinging wake

Author:

WISSINK JAN G.,RODI WOLFGANG

Abstract

The effect of an incoming wake on the flow around and heat transfer from the stagnation region of a circular cylinder was studied using direct numerical simulations (DNSs). Four simulations were carried out at a Reynolds number (based on free-stream velocity and cylinder diameterD) ofReD= 13200: one two-dimensional (baseline) simulation and three three-dimensional simulations. The three-dimensional simulations comprised a baseline simulation with a uniform incoming velocity field, a simulation in which realistic wake data – generated in a separate precursor DNS – were introduced at the inflow plane and, finally, a simulation in which the turbulent fluctuations were removed from the incoming wake in order to study the effect of the mean velocity deficit on the heat transfer in the stagnation region. In the simulation with realistic wake data, the incoming wake still exhibited the characteristic meandering behaviour of a near-wake. When approaching the regions immediately above and below the stagnation line of the cylinder, the vortical structures from the wake were found to be significantly stretched by the strongly accelerating wall-parallel (circumferential) flow into elongated vortex tubes that became increasingly aligned with the direction of flow. As the elongated streamwise vortical structures impinge on the stagnation region, on one side they transport cool fluid towards the heated cylinder, while on the other side hot fluid is transported away from the cylinder towards the free stream, thereby increasing the heat transfer. The DNS results are compared with various semi-empirical correlations for predicting the augmentation of heat transfer due to free-stream turbulence.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3