Single-dielectric barrier discharge plasma actuator modelling and validation

Author:

MERTZ BENJAMIN E.,CORKE THOMAS C.

Abstract

Single-dielectric barrier discharge (SDBD) plasma actuators have gained a great deal of world-wide interest for flow-control applications. With this has come the need for flow-interaction models of plasma actuators that can be used in computational flow simulations. SDBD plasma actuators consist of two electrodes: one uncovered and exposed to the air and the other encapsulated by a dielectric material. An AC electric potential is supplied to the electrodes. When the AC potential is large enough, the air in the region over the encapsulated electrode ionizes. The ionized air in the presence of the electric field results in a space–time dependent body force vector field. The body force is the mechanism for flow control. This study describes a semi-empirical model that has been developed to capture the dynamic nature of the local air ionization and time-dependent body force vector distribution. Validation of the model includes comparisons to experimentally measured space–time charge distribution and the time-resolved and time-averaged body force. Two flow simulations are then used to further validate the SDBD plasma actuator model. These involved an impulsively started plasma actuator in still air, and the flow around a circular cylinder in which plasma actuators were used to suppress the Karman vortex street. In both cases, the simulations agreed well with the experiments.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3