The action of waving cylindrical rings in a viscous fluid

Author:

NGUYEN HOA,ORTIZ RICARDO,CORTEZ RICARDO,FAUCI LISA

Abstract

Dinoflagellates (Pfisteria piscicida) are unicellular micro-organisms that swim due to the action of two eucaryotic flagella: a trailing, longitudinal flagellum that propagates planar waves and a transverse flagellum that propagates helical waves. Motivated by the wish to understand the role of the transverse flagellum in dinoflagellate motility, we study the fundamental fluid dynamics of a waving cylindrical tube wrapped into a closed helix. Given an imposed travelling wave on the structure, we determine that the helical ring propels itself in the direction normal to the plane of the circular axis of the helix. The magnitude of this translational velocity is proportional to the square of the helix amplitude. Additionally, the helical ring exhibits rotational motion tangential to its axis. These calculated swimming velocities are consistent when using the method of regularized Stokeslets with prescribed wave kinematics, regularized Stokeslets with dynamic forcing and Lighthill's slender-body theory, except in cases where the slenderness parameter is not small. The translational velocity results are nearly indistinguishable using the three approaches, leading to the conjecture that the main contribution to this velocity at a cross-section is the far-field flow generated by the portion on the opposite side of the ring. The largest contribution to the rotational velocity at a cross-section comes from the cross-section itself and others nearby, thus the geometric details of the slender body have a larger effect on the results.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3