A boundary element regularized Stokeslet method applied to cilia- and flagella-driven flow

Author:

Smith D. J.1

Affiliation:

1. School of Mathematics and School of Clinical and Experimental Medicine, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK Centre for Human Reproductive Science, Birmingham Women’s NHS Foundation Trust, Metchley Park Road, Edgbaston, Birmingham B15 2TG, UK

Abstract

A boundary element implementation of the regularized Stokeslet method of Cortez is applied to cilia and flagella-driven flows in biology. Previously published approaches implicitly combine the force discretization and the numerical quadrature used to evaluate boundary integrals. By contrast, a boundary element method can be implemented by discretizing the force using basis functions, and calculating integrals using accurate numerical or analytic integration. This substantially weakens the coupling of the mesh size for the force and the regularization parameter, and greatly reduces the number of degrees of freedom required. When modelling a cilium or flagellum as a one-dimensional filament, the regularization parameter can be considered a proxy for the body radius, as opposed to being a parameter used to minimize numerical errors. Modelling a patch of cilia, it is found that: (i) for a fixed number of cilia, reducing cilia spacing reduces transport, (ii) for fixed patch dimension, increasing cilia number increases the transport, up to a plateau at 9×9 cilia. Modelling a choanoflagellate cell, it is found that the presence of a lorica structure significantly affects transport and flow outside the lorica, but does not significantly alter the force experienced by the flagellum.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3