Author:
Costantini C.,Sagnon N.F.,Sanogo E.,Merzagora L.,Coluzzi M.
Abstract
AbstractThe efficiency of miniature CDC light-traps in catching West African malaria vectors was evaluated during two rainy seasons in a village near Ouagadougou, Burkina Faso. Traps were employed both indoors and outdoors using human baits protected by an insecticide-free mosquito-net and different sources of light. Indoors, light from incandescent bulbs increased the catch of Anopheles gambiae s.l. (mainly A. arabiensis Patton and the Mopti chromosomal form of A. gambiae s.s. Giles) and A. funestus Giles c. 2.5 times as compared to traps whose light bulb was removed. Conversely, the difference was not significant when a UV ‘Blacklight-blue’ fluorescent tube was compared to the incandescent bulb. Protecting the bait with a mosquito-net increased the catch c. 3 times for A. gambiae s.l. and c. 3.5 times for A. funestus. A prototype model of double bednet gave intermediate yields. Outdoors, the addition of incandescent bulbs to unlighted traps did not significantly increase the number of vectors caught, but the addition of the mosquito-net to the unprotected human bait did so by c. 1.5–4 times. Thus, the CDC light-trap hung close to a human sleeping under a bednet and fitted with an incandescent bulb, was considered the most practical and efficient in terms of numbers of vectors caught, consequently its indoor efficiency was compared to human landing catches on single collectors and estimated to be 1.08 times and density-independent. Outdoor light-trap catches were either not significantly correlated to biting collections (as for A. gambiae s.l.), or density-dependent in their efficiency (as for A. funestus); thus, they were not considered a reliable means for estimating malaria vector outdoor biting densities in this area. No difference was found in the parous rate of A. gambiae s.l. samples obtained with CDC light-traps and human landing collections.
Publisher
Cambridge University Press (CUP)
Subject
Insect Science,Agronomy and Crop Science,General Medicine
Reference45 articles.
1. Light Intensity and the Attraction of Mosquitoes to Light Traps
2. Contribution à l'étude du piège lumineux ‘CDC miniature light trap’ comme moyen d'échantillonage des populations anopheliènnes dans le Sud-Ouest de la Haute Volta;Coz;Cahiers ORSTOM.Série Entomologie Médicale et Parasitologie,1971
3. Sampling Anopheles arabiensis, A. gambiae sensu lato and A. funestus (Diptera: Culicidae) with CDC light-traps near a rice irrigation area and a sugarcane belt in western Kenya
4. A behavioural test of the sensitivity of a nocturnal mosquito, Anopheles gambiae, to dim white, red and infra-red light
5. Efficacité comparée de l'utilisation des pièges lumineux du type CDC et des sujets humains pour l'échantillonnage des populations anophéliennes. Résultats obtenus dans la zone de Bignona (Sénégal);Faye;Bulletin de la Societé de Pathologie Exotique,1992