A multivariate approach to infer locomotor modes in Mesozoic mammals

Author:

Chen Meng,Wilson Gregory P.

Abstract

AbstractEcomorphological diversity of Mesozoic mammals was presumably constrained by selective pressures imposed by contemporary vertebrates. In accordance, Mesozoic mammals for a long time had been viewed as generalized, terrestrial, small-bodied forms with limited locomotor specializations. Recent discoveries of Mesozoic mammal skeletons with distinctive postcranial morphologies have challenged this hypothesis. However, ecomorphological analyses of these new postcrania have focused on a single taxon, a limited region of the skeleton, or have been largely qualitative.For more comprehensive locomotor inference in Mesozoic mammals, we applied multivariate analyses to a morphometric data set of extant small-bodied mammals. We used 30 osteological indices derived from linear measurements of appendicular skeletons of 107 extant taxa that sample 15 orders and eight locomotor modes. Canonical variate analyses show that extant small-bodied mammals of different locomotor modes have detectable and predictable morphologies. The resulting morphospace occupation reveals a morphofunctional continuum that extends from terrestrial to scansorial, arboreal, and gliding modes, reflecting an increasingly slender postcranial skeleton with longer limb output levers adapted for speed and agility, and extends from terrestrial to semiaquatic/semifossorial and fossorial modes, reflecting an increasingly robust postcranial skeleton with shorter limb output levers adapted for powerful, propulsive strokes. We used this morphometric data set to predict locomotor mode in ten Mesozoic mammals within the Docodonta, Multituberculata, Eutriconodonta, “Symmetrodonta,” and Eutheria. Our results indicate that these fossil taxa represent five of eight locomotor modes used to classify extant taxa in this study, in some cases confirming and in other cases differing from prior ecomorphological assessments. Together with previous locomotor inferences of 19 additional taxa, these results show that by the Late Jurassic mammals had diversified into all but the saltatorial and active flight locomotor modes, and that this diversification was greatest in the Eutriconodonta and Multituberculata, although sampling of postcranial skeletons remains uneven across taxa and through time.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

Reference141 articles.

1. Ecology of small mammals

2. The grasping behaviour, locomotion and substrate use of the tree shrews Tupaia minor and T. tana (Mammalia, Scandentia)

3. Hildebrand M . 1985. Digging in quadrupeds. Pp. 89–109 in Hildebrand et al. 1985.

4. Morphology of dentition and forelimb of Zhangheotherium;Hu;Vertebrata PalAsiatica,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3