Proportional variation and scaling in the hindlimbs of hopping mammals, including convergent evolution in argygrolagids and jerboas

Author:

Jones Megan E.ORCID,Travouillon KennyORCID,Janis Christine M.ORCID

Abstract

AbstractBipedal hopping is a mode of locomotion seen today in four rodent lineages and one clade of marsupials. The Argyrolagidae, marsupials from the Oligocene to Pliocene of South America, have also been considered to be hoppers. These lineages all convergently evolved similar general morphologies, with elongated hindlimbs, reduced forelimbs, and elongated tails, and their similarities and variations may be informative in understanding the evolution of hopping in mammals. This study uses principal components analysis and log-log regressions to investigate variation in the hindlimb proportions of these hopping mammals and how this relates to body mass. We find that the distribution of hopping mammal masses is bimodal, divided at roughly 500 g. These two domains among hopping mammals may reflect optimisation for different forms of hopping locomotion; species under 500 g tend to have more elongated metatarsals relative to the rest of their hindlimbs, perhaps to facilitate rapid vertical jumps for predator evasion, a behaviour not seen in larger hoppers. Despite this bimodal distribution in body mass, hindlimb proportions cluster more by clade than mass, with some similarities among clades being especially noteworthy. The jerboas (Dipodidae, Rodentia) and Argyrolagidae share a particularly extreme degree of metatarsal elongation. The drivers of this convergence are unclear, but we hypothesise that the elongation may be related to the reduction/fusion of metatarsals in these groups, or a greater reliance on bipedality at slow speeds, as jerboas are known to utilise multiple bipedal gaits in addition to hopping.

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3