Abstract
AbstractWhen $p$ is an odd prime, Delbourgo observed that any Kubota–Leopoldt $p$-adic $L$-function, when multiplied by an auxiliary Euler factor, can be written as an infinite sum. We shall establish such expressions without restriction on $p$, and without the Euler factor when the character is non-trivial, by computing the periods of appropriate measures. As an application, we will reprove the Ferrero–Greenberg formula for the derivative $L_p'(0,\chi )$. We will also discuss the convergence of sum expressions in terms of elementary $p$-adic analysis, as well as their relation to Stickelberger elements; such discussions in turn give alternative proofs of the validity of sum expressions.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献