Abstract
AbstractWe define a topological space over the p-adic numbers, in which Euler products and Dirichlet series converge. We then show how the classical Riemann zeta function has a (p-adic) Euler product structure at the negative integers. Finally, as a corollary of these results, we derive a new formula for the non-Archimedean Euler–Mascheroni constant.
Publisher
Cambridge University Press (CUP)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On Iwasawa -invariants for abelian number fields and random matrix heuristics;Mathematics of Computation;2023-02-28
2. Sum expressions for Kubota–Leopoldt -adic -functions;Proceedings of the Edinburgh Mathematical Society;2022-05
3. Dirichlet series expansions of p-adic L-functions;Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg;2021-08-30
4. On -invariants attached to cyclic cubic number fields;LMS Journal of Computation and Mathematics;2015