Author:
Chidume C. E.,Uba M. O.,Uzochukwu M. I.,Otubo E. E.,Idu K. O.
Abstract
AbstractLetEbe a uniformly convex and uniformly smooth real Banach space, and letE* be its dual. LetA : E→ 2E*be a bounded maximal monotone map. Assume thatA−1(0) ≠ Ø. A new iterative sequence is constructed which convergesstronglyto an element ofA−1(0). The theorem proved complements results obtained on strong convergence ofthe proximal point algorithmfor approximating an element ofA−1(0) (assuming existence) and also resolves an important open question. Furthermore, this result is applied to convex optimization problems and to variational inequality problems. These results are achieved by combining a theorem of Reich on the strong convergence of the resolvent of maximal monotone mappings in a uniformly smooth real Banach space and new geometric properties of uniformly convex and uniformly smooth real Banach spaces introduced by Alber, with a technique of proof which is also of independent interest.
Publisher
Cambridge University Press (CUP)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献