Author:
Chidume C. E.,Adamu A.,Nnakwe M. O.
Abstract
AbstractAn inertial iterative algorithm is proposed for approximating a solution of a maximal monotone inclusion in a uniformly convex and uniformly smooth real Banach space. The sequence generated by the algorithm is proved to converge strongly to a solution of the inclusion. Moreover, the theorem proved is applied to approximate a solution of a convex optimization problem and a solution of a Hammerstein equation. Furthermore, numerical experiments are given to compare, in terms of CPU time and number of iterations, the performance of the sequence generated by our algorithm with the performance of the sequences generated by three recent inertial type algorithms for approximating zeros of maximal monotone operators. In addition, the performance of the sequence generated by our algorithm is compared with the performance of a sequence generated by another recent algorithm for approximating a solution of a Hammerstein equation. Finally, a numerical example is given to illustrate the implementability of our algorithm for approximating a solution of a convex optimization problem.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Geometry and Topology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献