Whole-genome sequencing surveillance and machine learning for healthcare outbreak detection and investigation: A systematic review and summary

Author:

Sundermann Alexander J.,Chen JieshiORCID,Miller James K.ORCID,Martin Elise M.ORCID,Snyder Graham M.ORCID,Van Tyne DariaORCID,Marsh Jane W.,Dubrawski ArturORCID,Harrison Lee H.

Abstract

Abstract Background: Whole-genome sequencing (WGS) has traditionally been used in infection prevention to confirm or refute the presence of an outbreak after it has occurred. Due to decreasing costs of WGS, an increasing number of institutions have been utilizing WGS-based surveillance. Additionally, machine learning or statistical modeling to supplement infection prevention practice have also been used. We systematically reviewed the use of WGS surveillance and machine learning to detect and investigate outbreaks in healthcare settings. Methods: We performed a PubMed search using separate terms for WGS surveillance and/or machine-learning technologies for infection prevention through March 15, 2021. Results: Of 767 studies returned using the WGS search terms, 42 articles were included for review. Only 2 studies (4.8%) were performed in real time, and 39 (92.9%) studied only 1 pathogen. Nearly all studies (n = 41, 97.6%) found genetic relatedness between some isolates collected. Across all studies, 525 outbreaks were detected among 2,837 related isolates (average, 5.4 isolates per outbreak). Also, 35 studies (83.3%) only utilized geotemporal clustering to identify outbreak transmission routes. Of 21 studies identified using the machine-learning search terms, 4 were included for review. In each study, machine learning aided outbreak investigations by complementing methods to gather epidemiologic data and automating identification of transmission pathways. Conclusions: WGS surveillance is an emerging method that can enhance outbreak detection. Machine learning has the potential to identify novel routes of pathogen transmission. Broader incorporation of WGS surveillance into infection prevention practice has the potential to transform the detection and control of healthcare outbreaks.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3