Real-time genomic surveillance for enhanced control of infectious diseases and antimicrobial resistance

Author:

Struelens Marc J.,Ludden Catherine,Werner Guido,Sintchenko Vitali,Jokelainen Pikka,Ip Margaret

Abstract

This article advocates for mobilizing pathogen genomic surveillance to contain and mitigate health threats from infectious diseases and antimicrobial resistance (AMR), building upon successes achieved by large-scale genome sequencing analysis of SARS-CoV-2 variants in guiding COVID-19 monitoring and public health responses and adopting a One Health approach. Capabilities of laboratory-based surveillance and epidemic alert systems should be enhanced by fostering (i) universal access to real-time whole genome sequence (WGS) data of pathogens to inform clinical practice, infection control, public health policies, and vaccine and antimicrobial drug research and development; (ii) integration of diagnostic microbiology data, data from testing asymptomatic individuals, pathogen sequence data, clinical data, and epidemiological data into surveillance programs; (iii) stronger cross-sectorial collaborations between healthcare, public health, animal health, and environmental surveillance and research using One Health approaches, toward understanding the ecology and transmission pathways of pathogens and AMR across ecosystems; (iv) international collaboration and interconnection of surveillance networks, harmonization of laboratory methods, and standardization of surveillance methods for global reporting, including on pathogen genomic variant or strain nomenclature; (v) responsible data sharing between surveillance networks, databases, and platforms according to FAIR (findability, accessibility, interoperability, and reusability) principles; and (vi) research on genomic surveillance system implementation and its cost-effectiveness for different pathogens and AMR threats across different settings. Regional and global One Health policies and governance initiatives should foster the concerted development and efficient utilization of pathogen genomic surveillance to protect the health of humans, animals, and the environment.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3