Acoustic speech markers for schizophrenia-spectrum disorders: a diagnostic and symptom-recognition tool

Author:

de Boer J. N.ORCID,Voppel A. E.,Brederoo S. G.ORCID,Schnack H. G.ORCID,Truong K. P.,Wijnen F. N. K.ORCID,Sommer I. E. C.ORCID

Abstract

Abstract Background Clinicians routinely use impressions of speech as an element of mental status examination. In schizophrenia-spectrum disorders, descriptions of speech are used to assess the severity of psychotic symptoms. In the current study, we assessed the diagnostic value of acoustic speech parameters in schizophrenia-spectrum disorders, as well as its value in recognizing positive and negative symptoms. Methods Speech was obtained from 142 patients with a schizophrenia-spectrum disorder and 142 matched controls during a semi-structured interview on neutral topics. Patients were categorized as having predominantly positive or negative symptoms using the Positive and Negative Syndrome Scale (PANSS). Acoustic parameters were extracted with OpenSMILE, employing the extended Geneva Acoustic Minimalistic Parameter Set, which includes standardized analyses of pitch (F0), speech quality and pauses. Speech parameters were fed into a random forest algorithm with leave-ten-out cross-validation to assess their value for a schizophrenia-spectrum diagnosis, and PANSS subtype recognition. Results The machine-learning speech classifier attained an accuracy of 86.2% in classifying patients with a schizophrenia-spectrum disorder and controls on speech parameters alone. Patients with predominantly positive v. negative symptoms could be classified with an accuracy of 74.2%. Conclusions Our results show that automatically extracted speech parameters can be used to accurately classify patients with a schizophrenia-spectrum disorder and healthy controls, as well as differentiate between patients with predominantly positive v. negatives symptoms. Thus, the field of speech technology has provided a standardized, powerful tool that has high potential for clinical applications in diagnosis and differentiation, given its ease of comparison and replication across samples.

Publisher

Cambridge University Press (CUP)

Subject

Psychiatry and Mental health,Applied Psychology

Reference57 articles.

1. Cues to the assessment of affects and moods: Speech fluency and pausing;Alpert;Psychopharmacology Bulletin,1995

2. Language as a biomarker for psychosis: A natural language processing approach

3. Speaker identification using Mel frequency Cepstral coefficients;Hasan;Variations,2004

4. Questioning the status of aberrant speech patterns as psychiatric symptoms

5. The Positive and Negative Syndrome Scale (PANSS) for Schizophrenia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3