Task-voting for schizophrenia spectrum disorders prediction using machine learning across linguistic feature domains

Author:

He RuiORCID,de la Foz Víctor Ortiz-García,Cacho Luis Manuel Fernández,Homan PhilippORCID,Sommer IrisORCID,Ayesa-Arriola Rosa,Hinzen Wolfram

Abstract

AbstractBackground and HypothesisIdentifying schizophrenia spectrum disorders (SSD) from spontaneous speech features is a key focus in computational psychiatry today.Study DesignWe present a task-voting procedure using different speech-elicitation tasks to predict SSD in Spanish, followed by ablation studies highlighting the roles of specific tasks and feature domains. Speech from five tasks was recorded from 92 subjects (49 with SSD and 41 controls). A total of 319 features were automatically extracted, from which 24 were pre-selected based on between-feature correlations and ANOVA F-values, covering acoustic-prosody, morphosyntax, and semantic similarity metrics.Study ResultsExtraTrees-based classification using these features yielded an accuracy of 0.840 on hold-out data. Ablating picture descriptions impaired performance most, followed by story reading, retelling, and free speech. Removing morphosyntactic measures impaired performance most, followed by acoustic and semantic measures. Mixed-effect models suggested significant group differences on all 24 features. In SSD, speech patterns were slower and more variable temporally, while variations in pitch, amplitude, and sound intensity decreased. Semantic similarity between speech and prompts decreased, while minimal distances from embedding centroids to each word increased, and word-to-word similarity arrays became more predictable, all replicating patterns documented in other languages. Morphosyntactically, SSD patients used more first-person pronouns together with less third-person pronouns, and more punctuations and negations. Semantic metrics correlated with a range of positive symptoms, and multiple acoustic-prosodic features with negative symptoms.ConclusionsThis study highlights the importance of combining different speech tasks and features for SSD detection, and validates previously found patterns in psychosis for Spanish.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3