Abstract
AbstractBackground and HypothesisIdentifying schizophrenia spectrum disorders (SSD) from spontaneous speech features is a key focus in computational psychiatry today.Study DesignWe present a task-voting procedure using different speech-elicitation tasks to predict SSD in Spanish, followed by ablation studies highlighting the roles of specific tasks and feature domains. Speech from five tasks was recorded from 92 subjects (49 with SSD and 41 controls). A total of 319 features were automatically extracted, from which 24 were pre-selected based on between-feature correlations and ANOVA F-values, covering acoustic-prosody, morphosyntax, and semantic similarity metrics.Study ResultsExtraTrees-based classification using these features yielded an accuracy of 0.840 on hold-out data. Ablating picture descriptions impaired performance most, followed by story reading, retelling, and free speech. Removing morphosyntactic measures impaired performance most, followed by acoustic and semantic measures. Mixed-effect models suggested significant group differences on all 24 features. In SSD, speech patterns were slower and more variable temporally, while variations in pitch, amplitude, and sound intensity decreased. Semantic similarity between speech and prompts decreased, while minimal distances from embedding centroids to each word increased, and word-to-word similarity arrays became more predictable, all replicating patterns documented in other languages. Morphosyntactically, SSD patients used more first-person pronouns together with less third-person pronouns, and more punctuations and negations. Semantic metrics correlated with a range of positive symptoms, and multiple acoustic-prosodic features with negative symptoms.ConclusionsThis study highlights the importance of combining different speech tasks and features for SSD detection, and validates previously found patterns in psychosis for Spanish.
Publisher
Cold Spring Harbor Laboratory