Network modeling of major depressive disorder symptoms in adult women

Author:

Moradi SheidaORCID,Falsafinejad Mohammad Reza,Delavar Ali,Rezaeitabar Vahid,Borj'ali Ahmad,Aggen Steven H.,Kendler Kenneth S.

Abstract

Abstract Background Major depressive disorder (MDD) is one of the growing human mental health challenges facing the global health care system. In this study, the structural connectivity between symptoms of MDD is explored using two different network modeling approaches. Methods Data are from ‘the Virginia Adult Twin Study of Psychiatric and Substance Use Disorders (VATSPSUD)’. A cohort of N = 2163 American Caucasian female-female twins was assessed as part of the VATSPSUD study. MDD symptoms were assessed using personal structured clinical interviews. Two network analyses were conducted. First, an undirected network model was estimated to explore the connectivity between the MDD symptoms. Then, using a Bayesian network, we computed a directed acyclic graph (DAG) to investigate possible directional relationships between symptoms. Results Based on the results of the undirected network, the depressed mood symptom had the highest centrality value, indicating its importance in the overall network of MDD symptoms. Bayesian network analysis indicated that depressed mood emerged as a plausible driving symptom for activating other symptoms. These results are consistent with DSM-5 guidelines for MDD. Also, somatic weight and appetite symptoms appeared as the strongest connections in both networks. Conclusions We discuss how the findings of our study might help future research to detect clinically relevant symptoms and possible directional relationships between MDD symptoms defining major depression episodes, which would help identify potential tailored interventions. This is the first study to investigate the network structure of VATSPSUD data using both undirected and directed network models.

Publisher

Cambridge University Press (CUP)

Subject

Psychiatry and Mental health,Applied Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3