Machine Learning and Bayesian Network Analyses Identifies Psychiatric Disorders and Symptom Associations with Insomnia in a national sample of 31,285 Treatment-Seeking College Students

Author:

Calderon Adam1,Baik Seung Yeon1,Ng Matthew H. S.2,Fitzsimmons-Craft Ellen E.3,Eisenberg Daniel4,Wilfley Denise E.3,Taylor C. Barr5,Newman Michelle G.1

Affiliation:

1. The Pennsylvania State University

2. Nanyang Technological University, Rehabilitation Research Institute of Singapore

3. Washington University School of Medicine

4. University of California-Los Angeles

5. Stanford University School of Medicine

Abstract

Abstract Background: A better understanding of the structure of relations among insomnia and anxiety, mood, eating, and alcohol-use disorders is needed, given its prevalence among young adults. Supervised machine learning provides the ability to evaluate the discriminative accuracy of psychiatric disorders associated with insomnia. Combined with Bayesian network analysis, the directionality between symptoms and their associations may be illuminated. Methods: The current exploratory analyses utilized a national sample of college students across 26 U.S. colleges and universities collected during population-level screening before entering a randomized controlled trial. Firstly, an elastic net regularization model was trained to predict, via repeated 10-fold cross-validation, which psychiatric disorders were associated with insomnia severity. Seven disorders were included: major depressive disorder, generalized anxiety disorder, social anxiety disorder, panic disorder, post-traumatic stress disorder, anorexia nervosa, and alcohol use disorder. Secondly, using a Bayesian network approach, completed partially directed acyclic graphs (CPDAG) built on training and holdout samples were computed via a Bayesian hill-climbing algorithm to determine symptom-level interactions of disorders most associated with insomnia [based on SHAP (SHapley Additive exPlanations) values)] and were evaluated for stability across networks. Results: Of 31,285 participants, 20,597 were women (65.8%); mean (standard deviation) age was 22.96 (4.52) years. The elastic net model demonstrated clinical significance in predicting insomnia severity in the training sample [R2 = .449 (.016); RMSE = 5.00 [.081]), with comparable performance in accounting for variance explained in the holdout sample [R2 = .33; RMSE = 5.47). SHAP indicated the presence of any psychiatric disorder was associated with higher insomnia severity, with major depressive disorder demonstrated to be the most associated disorder. CPDAGs showed excellent fit in the holdout sample and suggested that depressed mood, fatigue, and self-esteem were the most important depression symptoms that presupposed insomnia. Conclusion: These findings offer insights into associations between psychiatric disorders and insomnia among college students and encourage future investigation into the potential direction of causality between insomnia and major depressive disorder. Trial registration: Trial may be found on the National Institute of Health RePORTER website: Project Number: R01MH115128-05.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3