Author:
Rainey Carlisle,McCaskey Kelly
Abstract
AbstractIn small samples, maximum likelihood (ML) estimates of logit model coefficients have substantial bias away from zero. As a solution, we remind political scientists of Firth's (1993, Biometrika, 80, 27–38) penalized maximum likelihood (PML) estimator. Prior research has described and used PML, especially in the context of separation, but its small sample properties remain under-appreciated. The PML estimator eliminates most of the bias and, perhaps more importantly, greatly reduces the variance of the usual ML estimator. Thus, researchers do not face a bias-variance tradeoff when choosing between the ML and PML estimators—the PML estimator has a smaller bias and a smaller variance. We use Monte Carlo simulations and a re-analysis of George and Epstein (1992, American Political Science Review, 86, 323–337) to show that the PML estimator offers a substantial improvement in small samples (e.g., 50 observations) and noticeable improvement even in larger samples (e.g., 1000 observations).
Publisher
Cambridge University Press (CUP)
Subject
Political Science and International Relations,Sociology and Political Science
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献