Are we modelling the correct dataset? Minimizing false predictions for dengue fever in Thailand

Author:

AGUIAR M.,PAUL R.,SAKUNTABHAI A.,STOLLENWERK N.

Abstract

SUMMARYModels describing dengue epidemics are parametrized on disease incidence data and therefore high-quality data are essential. For Thailand, two different sources of long-term dengue data are available, the hard copy data from 1980 to 2005, where hospital admission cases were notified, and the electronic files, from 2003 to the present, where clinically classified forms of disease, i.e. dengue fever, dengue haemorrhagic fever, and dengue shock syndrome, are notified using separate files. The official dengue notification data, provided by the Bureau of Epidemiology, Ministry of Public Health in Thailand, were cross-checked with dengue data used in recent publications, where an inexact continuous time-series was observed to be consistently used since 2003, affecting considerably the model dynamics and its correct application. In this paper, numerical analysis and simulation techniques giving insights on predictability are performed to show the effects of model parametrization by using different datasets.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3