Modelling COVID 19 in the Basque Country from introduction to control measure response

Author:

Aguiar Maíra,Ortuondo Eduardo Millán,Bidaurrazaga Van-Dierdonck Joseba,Mar Javier,Stollenwerk Nico

Abstract

AbstractIn March 2020, a multidisciplinary task force (so-called Basque Modelling Task Force, BMTF) was created to assist the Basque health managers and Government during the COVID-19 responses. BMTF is a modelling team, working on different approaches, including stochastic processes, statistical methods and artificial intelligence. Here we describe the efforts and challenges to develop a flexible modeling framework able to describe the dynamics observed for the tested positive cases, including the modelling development steps. The results obtained by a new stochastic SHARUCD model framework are presented. Our models differentiate mild and asymptomatic from severe infections prone to be hospitalized and were able to predict the course of the epidemic, providing important projections on the national health system’s necessities during the increased population demand on hospital admissions. Short and longer-term predictions were tested with good results adjusted to the available epidemiological data. We have shown that the partial lockdown measures were effective and enough to slow down disease transmission in the Basque Country. The growth rate $$ \lambda $$ λ was calculated from the model and from the data and the implications for the reproduction ratio r are shown. The analysis of the growth rates from the data led to improved model versions describing after the exponential phase also the new information obtained during the phase of response to the control measures. This framework is now being used to monitor disease transmission while the country lockdown was gradually lifted, with insights to specific programs for a general policy of “social distancing” and home quarantining.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference51 articles.

1. World Health Organization. Naming the Coronavirus Disease (COVID-19) and the Virus that Causes it. Retrieved from https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it.

2. World Health Organization. Emergencies Preparedness, Response. Novel Coronavirus China. Retrieved from https://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/.

3. World Health Organization. WHO Announces COVID-19 Outbreak a Pandemic. Retrieved from http://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/news/news/2020/3/who-announces-covid-19-outbreak-a-pandemic.

4. World Health Organization. Coronavirus Disease (COVID-2019) Situation Reports. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200420-sitrep-91-covid-19.pdf?sfvrsn=fcf0670b_4.

5. Governo Italiano Presidenza del Consiglio dei Ministri, March 9th, 2020. Retrieved from http://www.governo.it/it/articolo/firmato-il-dpcm-9-marzo-2020/14276.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3