Optimal vaccine schedules to maintain measles elimination with a two-dose routine policy

Author:

McKEE A.,SHEA K.,FERRARI M. J.

Abstract

SUMMARYMeasles was eliminated in the Americas in 2002 by a combination of routine immunizations and supplementary immunization activities. Recent outbreaks underscore the importance of reconsidering vaccine policy in order to maintain elimination. We constructed an age-structured dynamical model for the distribution of immunity in a population with routine immunization and without disease, and analysed the steady state for an idealized age structure and for real age structures of countries in the Americas. We compared the level of immunity maintained by current policy in these countries to the level maintainable by an optimal policy. The optimal age target for the first routine dose of measles vaccine depends on the timing and coverage of both doses. Similarly, the optimal age target for the second dose of measles vaccine depends on the timing and coverage of the first dose. The age targets for the first and second doses of measles vaccine should be adjusted for the post-elimination era, by specifically accounting for current context, including realized coverage of both doses, and altered maternal immunity. Doing so can greatly improve the proportion immune within a population, and therefore the chances of maintaining measles elimination, without changing coverage.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Epidemiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Resurgent global measles: A threat to Australia, New Zealand and Pacific Island Countries;Journal of Paediatrics and Child Health;2024-02

2. Measles;The Lancet;2022-02

3. Modeling of measles epidemic with optimized fractional order under Caputo differential operator;Chaos, Solitons & Fractals;2021-04

4. Modelling the Periodic Outbreak of Measles in Mainland China;Mathematical Problems in Engineering;2020-03-20

5. Control Policy Mix in Measles Transmission Dynamics Using Vaccination, Therapy, and Treatment;International Journal of Mathematics and Mathematical Sciences;2020-03-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3