Affiliation:
1. Department of Mathematics, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
Abstract
This paper considers a deterministic model for the dynamics of measles transmission in a population divided into six classes with respect to the disease states: susceptible, vaccinated, exposed, infected, treated, and recovered. First, we investigate the dynamical properties of the SVEITR model such as its equilibrium points, their stability, and parameter sensitivity by applying constant controls. Criteria for determining the stability of disease-free and endemic equilibrium points are provided in terms of basic reproduction number. The model is then extended by incorporating vaccination, therapy, and treatment rates as time-dependent control variables representing the level of coverages. Application of Pontryagin’s maximum principle provides the necessary conditions that must be satisfied for the existence of optimal controls aiming at minimization of the number of exposed and infected individuals simultaneously with the control effort. Numerical simulations that were carried out using the backward sweep method and Runge–Kutta scheme suggest that optimal controls under moderate and high scenarios can effectively reduce the cases of measles. In particular, the moderate scenario that utilizes the existing coverage level of 86% for MCV1 and 69% for MCV2 can degrade the cost functional by 47% of the low scenario. Meanwhile, high scenario that takes the 2020 target of 96% as coverage only makes a slight difference in reducing the number of exposed and infected individuals.
Subject
Mathematics (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献