Agronomic and physiological aspects of nitrogen use efficiency in conventional and organic cereal-based production systems

Author:

Kubota Hiroshi,Iqbal Muhammad,Quideau Sylvie,Dyck Miles,Spaner Dean

Abstract

AbstractBetter management of synthetic nitrogen (N) fertilizers in conventional agricultural systems laid the foundation for feeding the increasing world's population since the Green Revolution. However, excessive reliance on inorganic fertilizer has resulted in environmental degradation issues. Difficulties in soil nutrition management in organic cropping systems often results in lower and variable yields, also raising questions of sustainability. Improving nitrogen use efficiency (NUE) is thus of key importance to overcome environmental concerns in conventional systems and production limitations in organic systems. The differences in the two farming systems have impacts on crop traits and N cycles, making it difficult to enhance NUE with a single strategy. Different approaches need to be adopted to improve NUE in each system. Extensive efforts have been made to better understand mechanisms to potentially improve NUE in cereal crops under both systems. This review suggests that NUE may be improved through a combination of management practices and breeding strategies specific to the management system. Diversified crop rotations with legumes are effective practices to optimize the N cycle in both conventional and organic systems. Best Management Practices coupled with nitrification inhibitors, controlled release products and split-application practices can reduce N loss in conventional systems. In organic systems, we need to take advantage of available N sources and adapt practices such as no-tillage, cover crops, and catch crops. Utilization of beneficial soil microorganisms is fundamental to optimizing availability of soil N. Estimation of soil organic matter mineralization using prediction models may be useful to enhance NUE if models are calibrated for target environments. Cereal crops are often bred under optimum N conditions and may not perform well under low N conditions. Thus, breeders can integrate genetic and phenotypic information to develop cultivars adapted to specific environments and cultivation practices. The proper choice and integration of strategies can synchronize N demand and supply within a system, resulting in reduced risk of N loss while improving NUE in both conventional and organic systems.

Publisher

Cambridge University Press (CUP)

Subject

Agronomy and Crop Science,Food Science

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3