Method of Fundamental Solutions for Stokes' First and Second Problems

Author:

Hu S. P.,Fan C. M.,Chen C. W.,Young D. L.

Abstract

AbstractThis paper describes the applications of the method of fundamental solutions (MFS) as a mesh-free numerical method for the Stokes' first and second problems which prevail in the semi-infinite domain with constant and oscillatory velocity at the boundary in the fluid-mechanics benchmark problems. The time-dependent fundamental solutions for the semi-infinite problems are used directly to obtain the solution as a linear combination of the unsteady fundamental solution of the diffusion operator. The proposed numerical scheme is free from the conventional Laplace transform or the finite difference scheme to deal with the time derivative term of the governing equation. By properly placing the field points and the source points at a given time level, the solution is advanced in time until steady state solutions are reached. It is not necessary to locate and specify the condition at the infinite domain such as other numerical methods. Since the present method does not need mesh discretization and nodal connectivity, the computational effort and memory storage required are minimal as compared to the domain-oriented numerical schemes. Test results obtained for the Stokes' first and second problems show good comparisons with the analytical solutions. Thus the present numerical scheme has provided a promising mesh-free numerical tool to solve the unsteady semi-infinite problems with the space-time unification for the time-dependent fundamental solution.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Reference18 articles.

1. Methods of fundamental solutions for harmonic and biharmonic boundary value problems

2. Dual reciprocity BEM without matrix inversion for transient heat conduction

3. The method of fundamental solutions for Poisson's equation

4. 7. Tsai C. C. , “Meshless numerical methods and their engineering applications,” Ph.D. Dissertation, Department of Civil Engineering, National Taiwan University, Taipei, Taiwan (2002).

5. A combination of LTDRM and ATPS in solving diffusion problems

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3