Extensive protected area coverage and an updated global population estimate for the Endangered Madagascar Serpent-eagleEutriorchis astur

Author:

Sutton Luke J.ORCID,Benjara Armand,Rene de Roland Lily-Arison,Thorstrom Russell,McClure Christopher J. W.ORCID

Abstract

SummaryKnowledge gaps regarding distribution, habitat associations, and population size for rare and threatened range-restricted taxa lead to uncertainty in directing conservation action. Quantifying range metrics and species–habitat associations using Species Distribution Models (SDMs) with remote-sensing habitat data can overcome these setbacks by establishing baseline estimates for biological parameters critical for conservation assessments. Area of Habitat (AOH) is a new range metric recently developed by the International Union for Conservation of Nature (IUCN) Red List. AOH seeks to quantify inferred habitat within a species’ range to inform extinction risk assessments. Here, we used SDMs correlating occurrences with remote-sensing covariates to calculate a first estimate of AOH for the Endangered Madagascar Serpent-eagleEutriorchis astur, and then updated additional IUCN range metrics and the current global population estimate. From these baselines we then conducted a gap analysis assessing protected area coverage. Our continuous SDM had robust predictive performance (Continuous Boyce Index = 0.835) and when reclassified to a binary model estimated an AOH = 30,121 km2, 13% less than the current IUCN range map. We estimated a global population of 533 mature individuals derived from the Madagascar Serpent-eagle AOH metric, which was within current IUCN population estimates. The current protected area network covered 95% of AOH, with the binary model identifying three additional key habitat areas as new protected area designations to fully protect Madagascar Serpent-eagle habitat. Our results demonstrated that correlating presence-only occurrences with remote-sensing habitat covariates can fill knowledge gaps useful for informing conservation action. Applying this spatial information to conservation planning would ensure almost full protected area coverage for this endangered raptor. For tropical forest habitat specialists, we recommend that potential predictors derived from remote sensing, such as vegetation indices and biophysical measures, are considered as covariates, along with other variables including climate and topography.

Funder

M.J. Murdock Charitable Trust

Publisher

Cambridge University Press (CUP)

Subject

Nature and Landscape Conservation,Animal Science and Zoology,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3