Priority conservation areas and a global population estimate for the critically endangered Philippine Eagle

Author:

Sutton L. J.1ORCID,Ibañez J. C.23,Salvador D. I.2,Taraya R. L.2,Opiso G. S.2,Senarillos T. L. P.2,McClure C. J. W.1ORCID

Affiliation:

1. The Peregrine Fund Boise ID USA

2. Philippine Eagle Foundation Philippine Eagle Center Davao City Philippines

3. University of the Philippines – Mindanao Davao City Philippines

Abstract

AbstractMany range‐restricted taxa are experiencing population declines, yet we lack fundamental information regarding their distribution and population size. Establishing baseline estimates for both of these key biological parameters is however critical for directing conservation planning for at‐risk range‐restricted species. The International Union for the Conservation of Nature (IUCN) Red List uses three range metrics that define species distributions and inform extinction risk assessments: extent of occurrence (EOO), area of occupancy (AOO) and area of habitat (AOH). However, calculating all three metrics using standard IUCN approaches relies on a geographically representative sample of locations, which for rare species is often spatially biased. Here, we apply model‐based interpolation using Species Distribution Models (SDMs), correlating occurrences with remote‐sensing covariates, to calculate IUCN range metrics, protected area coverage and a global population estimate for the Critically Endangered Philippine Eagle (Pithecophaga jefferyi). Our final range wide continuous SDM had high predictive accuracy (continuous Boyce Index = 0.934) and when converted to a binary model estimated an AOH as 28 624 km2, a maximum EOO as 617 957 km2, and a minimum EOO as 275 459 km2, with an AOO as 53 867 km2. Based on inferred habitat from the AOH metric, we estimate a global population of 392 breeding pairs (range: 318–447 pairs), or 784 mature individuals, across the Philippine Eagle global range. Protected areas covered 32% of AOH, 13% less than the target representation, with the continuous model identifying key habitat as priority conservation areas. We demonstrate that even when occurrences are geographically biased, robust habitat models can quantify baseline IUCN range metrics, protected area coverage and a population size estimate. In the absence of adequate location data for many rare and threatened taxa, our method is a promising spatial modelling tool with widespread applications, particularly for island endemics facing high extinction risk.

Funder

Disney Conservation Fund

M.J. Murdock Charitable Trust

United States Agency for International Development

Whitley Fund for Nature

Peregrine Fund

U.S. Forest Service

Cornell Lab of Ornithology

Department of Environment and Natural Resources

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology

Reference114 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3