Existence and non-existence of minimal graphic and p-harmonic functions

Author:

Casteras Jean-Baptiste,Heinonen Esko,Holopainen Ilkka

Abstract

AbstractWe prove that every entire solution of the minimal graph equation that is bounded from below and has at most linear growth must be constant on a complete Riemannian manifold M with only one end if M has asymptotically non-negative sectional curvature. On the other hand, we prove the existence of bounded non-constant minimal graphic and p-harmonic functions on rotationally symmetric Cartan-Hadamard manifolds under optimal assumptions on the sectional curvatures.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference33 articles.

1. Vähäkangas, A. . Dirichlet problem on unbounded domains and at infinity. Reports in Mathematics, Preprint 499, Department of Mathematics and Statistics, University of Helsinki, 2009.

2. Dirichlet Problem at Infinity for $\mathcal A$ -Harmonic Functions

3. Vähäkangas, A. . Bounded p-harmonic functions on models and Cartan-Hadamard manifolds. Unpublished licentiate thesis, Department of Mathematics and Statistics, University of Helsinki, 2006.

4. Interior Gradient Estimates and Existence Theorems for Constant Mean Curvature Graphs in Mn × R

5. Complete minimal graphs with prescribed asymptotic boundary on rotationally symmetric Hadamard surfaces

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonnegative Ricci curvature and minimal graphs with linear growth;Analysis & PDE;2024-08-21

2. Bernstein and Half-Space Properties for Minimal Graphs Under Ricci Lower Bounds;International Mathematics Research Notices;2022-01-04

3. Recent rigidity results for graphs with prescribed mean curvature;Mathematics in Engineering;2021

4. Survey on the Asymptotic Dirichlet Problem for the Minimal Surface Equation;Minimal Surfaces: Integrable Systems and Visualisation;2021

5. Some Geometric Motivations;Geometric Analysis of Quasilinear Inequalities on Complete Manifolds;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3