Bernstein and Half-Space Properties for Minimal Graphs Under Ricci Lower Bounds

Author:

Colombo Giulio1,Magliaro Marco2,Mari Luciano3,Rigoli Marco1

Affiliation:

1. Dipartimento di Matematica “F. Enriques,” Università degli Studi di Milano, Via Saldini 50, I-20133 Milano, Italy

2. Departamento de Matemática, Universidade Federal do Ceará, Campus do Pici, Bloco 914, 60.455-760, Fortaleza, CE, Brazil

3. Dipartimento di Matematica “G. Peano,” Università degli Studi di Torino, Via Carlo Alberto 10, 10123 Torino, Italy

Abstract

Abstract In this paper, we prove a new gradient estimate for minimal graphs defined on domains of a complete manifold $M$ with Ricci curvature bounded from below. This enables us to show that positive, entire minimal graphs on manifolds with non-negative Ricci curvature are constant and that complete, parabolic manifolds with Ricci curvature bounded from below have the half-space property. We avoid the need of sectional curvature bounds on $M$ by exploiting a form of the Ahlfors–Khas’minskii duality in nonlinear potential theory.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference70 articles.

1. Some interior regularity theorems for minimal surfaces and an extension of Bernstein’s theorem;Almgren, Jr.;Ann. Math. (2),1966

2. Sur un théorème de géométrie et ses applications aux équations aux dérivées partielles du type elliptique;Bernstein,1915

3. Frontiers in Mathematics;Bianchini,2021

4. Una maggiorazione a priori relativa alle ipersuperfici minimali non parametriche;Bombieri;Arch. Rational Mech. Anal.,1969

5. Minimal cones and the Bernstein problem;Bombieri;Invent. Math.,1969

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonnegative Ricci curvature and minimal graphs with linear growth;Analysis & PDE;2024-08-21

2. On Splitting Complete Manifolds via Infinity Harmonic Functions;International Mathematics Research Notices;2024-08-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3