Understanding the mechanisms and kinetics of seed aging

Author:

Walters Christina

Abstract

AbstractWhen seeds deteriorate, they lose vigour and become more sensitive to stresses upon germination. Eventually seeds lose the ability to germinate. The factors which determine the rate of this ‘aging’ are the temperature and moisture content at which seeds are stored and an ill-defined parameter, seed quality. While it has been known for many years that manipulation of these factors influences the longevity of seeds, the precise interactions among them are so poorly understood as to preclude the prediction of longevity for a particular seed lot. Concepts from studies of materials and food stability can be applied to seed aging research, and this may help us take a more integrative approach to understanding the kinetics of seed deterioration. These concepts describe the physical environment of the seed matrix in response to changing water contents and temperature. Water activity models describe the state of water in the seed, while the glass models describe the state of the aqueous solution. Both models presume that changes of state affect the nature and kinetics of chemical reactions. Thus, the physical and chemical environment within the seed are inextricably linked.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

Reference204 articles.

1. Change of ATP content in Echinochloa crus-galli var praticola seeds during imbibition and storage;Zungsontiporn;Weed Research,1989

2. GC-MS identification of volatile compounds evolved by dry seeds in relation to storage conditions;Zhang;Seed Science and Technology,1995

3. A mechanism of seed deterioration in relation to the volatile compounds evolved by dry seeds themselves

4. Effect of Aging on Soluble Oligosaccharide Content in Soybean Seeds 1

5. What is vitrification and how can it extend life?;Williams;Japanese Journal of Freezing and Drying,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3