Seed coat formation: its evolution and regulation

Author:

Matilla Angel J.ORCID

Abstract

AbstractIn higher plants, the seed precursor (ovule primordia) is composed of three parts: funiculus, nucellus and chalaza, generating the latter one (II) or two (OI and II) protective maternal integuments (seed coat, SC). The appearance of a viable seed requires the coordinate growth and development of the preceding three compartments. Integuments are essentials for seed life as they nourish, protect and facilitate seed dispersion. Endosperm and integument growth and development are tightly coupled. Gymnosperm and angiosperm ovules are commonly unitegmic and bitegmic, respectively. Unusually, ategmy and threetegmy (OI, II and aril) also exist. The expression of theINO,ATSandETTgenes, involved in integument development, seems to have demonstrated that the fusion of OI and II leads to the appearance of unitegmy in higher plants. Likewise,INOexpression also manifests the conservation of OI during evolution. The molecular control of SC development is constituted by a signalling network with still a multitude of gaps. The fertilization-independent development of the ovule is repressed by the FERTILIZATION INDEPENDENT SEED (FIS), a Polycomb-Repressive-Complex-2 (PRC2). Both endosperm and SC development are tightly linked to PRC2 function. As in many other developmental processes, auxin plays an essential role during ovule and SC development. Auxin transport from the endosperm to the integuments is regulated by AGL62 (AGAMOUS-LIKE 62), the encoding gene of which is specifically expressed in the endosperm to suppress its cellularization. In the absence of AGL62 (i.e.agl62mutants), auxin remains trapped in the endosperm and the SC fails to develop (i.e. seed abortion). This update shows that auxin biosynthesis, transport and signalling play a predominant role and seem to be absolutely required in the pathway(s) that lead to SC formation, most likely not as a unique hormonal component.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3