An analysis of embryo development in palm: interactions between dry matter accumulation and water relations in Pritchardia remota (Arecaceae)

Author:

Pérez Hector E.,Hill Lisa M.,Walters Christina

Abstract

AbstractAssessments of seed storage physiology among Arecaceae (palm) species are often inconclusive because seeds exhibit diverse responses to low temperature and moisture conditions. Interrelationships between dry matter accumulation, cell structure and water relations during seed development of the endangered Hawaiian endemic palm, Pritchardia remota, suggest that damage from drying results from mechanical strain. Endosperm and fruits accumulate dry mass through most of the 400 d gestation period, but embryos reached maximum dry mass about 250 d post-anthesis (DPA). Mostly sucrose and some triacylglycerols accumulated in the cytoplasm and vacuoles of embryo cells, and organelles in mature embryo cells de-differentiated. Water content and water potential decreased as embryos matured and embryos contained about 0.45 g H2O (g dry mass)− 1 ( − 26 MPa) at shedding. Mature embryos survived drying to 0.16 g g− 1 ( − 49 MPa), but further drying was lethal. A model of allowable cell shrinkage is consistent with the substantial, but incomplete, desiccation tolerance acquired in P. remota embryos, and provides a new framework to explain variation in critical water contents as embryos develop. We suggest that desiccation tolerance, which distinguishes recalcitrant and orthodox physiologies among seeds, can be quantified by mechanical strain when embryo cells shrink during drying.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

Reference67 articles.

1. Traits of recalcitrant seeds in a semi-deciduous tropical forest in Panama: some ecological implications

2. Rapid excision of Pritchardia embryos;Pérez;Palms,2005

3. Desiccation sensitivity in orthodox and recalcitrant seeds in relation to development.

4. The development and limits of freezing tolerance in Acer pseudoplatanus fruits across Europe is dependent on provenance;Daws;CryoLetters,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3