Single-seed oxygen consumption measurements and population-based threshold models link respiration and germination rates under diverse conditions

Author:

Bello Pedro,Bradford Kent J.

Abstract

AbstractSeed germination is responsive to diverse environmental, hormonal and chemical signals. Germination rates (i.e. speed and distribution in time) reveal information about timing, uniformity and extent of germination in seed populations and are sensitive indicators of seed vigour and stress tolerance. Population-based threshold (PBT) models have been applied to describe germination responses to temperature, water potential, hormones, ageing and oxygen. However, obtaining detailed data on germination rates of seed populations requires repeated observations at frequent times to construct germination time courses, which is labour intensive and often impractical. Recently, instruments have been developed to measure repeatedly the respiration (oxygen consumption) of individual seeds following imbibition, providing complete respiratory time courses for populations of individual seeds in an automated manner. In this study, we demonstrate a new approach that enables the use of single-seed respiratory data, rather than germination data, to characterize the responses of seed populations to diverse conditions. We applied PBT models to single-seed respiratory data and compared the results to similar analyses of germination time courses. We found consistent and quantitatively comparable relationships between seed respiratory and germination patterns in response to temperature, water potential, abscisic acid, gibberellin, respiratory inhibitors, ageing and priming. This close correspondence between seed respiration and germination time courses enables the use of semi-automated respiratory measurements to assess seed vigour and quality parameters. It also raises intriguing questions about the fundamental relationship between the respiratory capacities of seeds and the rates at which they proceed toward completion of germination.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3