Critical water potentials for germination of wheat cultivars in the dryland Northwest USA

Author:

Singh Prabhakar,Ibrahim Hesham M.,Flury Markus,Schillinger William F.,Knappenberger Thorsten

Abstract

AbstractLow soil water potential limits or prevents germination and emergence of rainfed winter wheat (Triticum aestivum L.). This phenomenon is particularly pronounced in the winter wheat–summer fallow region of the US Inland Pacific Northwest, where wheat is routinely sown deep to reach moisture with 12–15 cm of soil covering the seed. Wide differences in seedling emergence among winter wheat cultivars have been reported, but few previous experiments have examined germination differences among cultivars as a function of water potential. The objective of our laboratory study was to quantify seed germination of five commonly sown winter wheat cultivars (Moro, Xerpha, Eltan, Buchanan and Finley) at seven water potentials, ranging from 0 to − 1.5 MPa. Germination was measured as a function of time for a period of 30 d. At higher water potentials (0 to − 0.5 MPa), all cultivars had germination of more than 90%. At the lowest water potentials ( − 1.0 to − 1.25 MPa), however, Moro consistently exceeded the other cultivars for speed and extent of germination, with total germination of 74% at − 1.0 MPa and 43% at − 1.25 MPa. Since its release in 1966, Moro has been sown by farmers when seed-zone water conditions are marginal. Scientists have long known that coleoptile length is an important factor controlling winter wheat seedling emergence from deep sowing depths. In addition to having a long coleoptile, our data suggest that Moro's known excellent emergence ability from deep sowing depths in dry soils can also be attributed to the ability to germinate at lower water potentials than other cultivars.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3