Preservation of cochlear structures and hearing when using the Nucleus Slim Straight (CI422) electrode in children

Author:

Skarzynski H,Matusiak M,Lorens A,Furmanek M,Pilka A,Skarzynski P H

Abstract

AbstractObjective:In cochlear implantation, there are two crucial factors promoting hearing preservation: an atraumatic surgical approach and selection of an electrode that does not damage cochlear structures. This study aimed to evaluate hearing preservation in children implanted with the Nucleus Slim Straight (CI422) electrode.Methods:Nineteen children aged 6–18 years, with partial deafness, were implanted using the 6-step Skarzynski procedure. Electrode insertion depth was 20–25 mm. Hearing status was assessed with pure tone audiometry before surgery, and at 1, 5, 9, 12 and 24 months after surgery. Electrode placement was confirmed with computed tomography.Results:Mean hearing preservation in the study group at activation of the cochlear implant was 73 per cent (standard deviation = 37 per cent). After 24 months, it was 67 per cent (standard deviation = 45 per cent). On a categorical scale, hearing preservation was possible in 100 per cent of cases.Conclusion:Hearing preservation in children implanted with the Nucleus CI422 slim, straight electrode is possible even with 25 mm insertion depth, although the recommended insertion depth is 20 mm. A round window approach using a soft, straight electrode is most conducive to hearing preservation.

Publisher

Cambridge University Press (CUP)

Subject

Otorhinolaryngology,General Medicine

Reference29 articles.

1. Cochlear view: Postoperative radiography for cochlear implantation

2. Hearing Preservation Via a Cochleostomy Approach and Deep Insertion of a Standard Length Cochlear Implant Electrode

3. Cochlear Implant Insertion Forces in Microdissected Human Cochlea to Evaluate a Prototype Array

4. Partial deafness treatment in children by using Cochlear SRA electrode: round window surgical technique and evaluation by comparison of preservation of residual hearing and insertion depth angle;Skarzynski;Int J Pediatr Otorhinolaryngol,2011

5. Surgical techniques in partial deafness treatment;Skarzynski;J Hear Sci,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3