Simulating the opening of a champagne bottle

Author:

Wagner LukasORCID,Braun StefanORCID,Scheichl BernhardORCID

Abstract

The axially symmetric, swirl-free gas dynamics and interlinked motion of a cork stopper provoked by the opening of a champagne bottle are modelled rigorously and studied numerically. The experimental study by Liger-Belair et al. (Science Advances, 5(9), 2019) animated the present investigation. Inspection analysis justifies the inviscid treatment of the expanding jet of air enriched with dissolved carbonic acid gas initially pressurised in the bottle. Solving of the resulting Euler equations is facilitated by the open-source software Clawpack. Specific enhancements allow for resolving of the emerging supersonic pockets, associated with surprisingly complex shock structures, as well as the gas–stopper interaction with due accuracy. Our experimental effort provided modelling of the frictional behaviour, constitutive law and reversible (de-)compression of the cork material. Initially, the gas expands inside the bottleneck yet sealed by the stopper, and is hence accelerated by the gas but decelerated by dry sliding friction. Once the stopper has passed the bottle opening, the jet rapidly assumes locally supersonic speed, where a complex shock pattern is detected. Special attention is paid to the formation and dissolution of one or even two Mach discs between the opening and the released stopper. This simulated dynamics is found to be in fairly good agreement with recent experimental findings. It also provides a first insight into the generation of the typical popping sound.

Publisher

Cambridge University Press (CUP)

Subject

Fluid Flow and Transfer Processes,Engineering (miscellaneous),Aerospace Engineering,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3