Abstract
AbstractWe study the expressive power of independence-friendly quantifier prefixes composed of universal$\left( {\forall x/X} \right)$, existential$\left( {\exists x/X} \right)$, and majority quantifiers$\left( {Mx/X} \right)$. We provide four quantifier prefixes that can express NP hard properties and show that all quantifier prefixes capable of expressing NP-hard properties embed at least one of these four quantifier prefixes. As for the quantifier prefixes that do not embed any of these four quantifier prefixes, we show that they are equivalent to a first-order quantifier prefix composed of$\forall x$,$\exists x$, and Mx. In unison, our results imply a dichotomy result: every independence-friendly quantifier prefix is either decidable in LOGSPACE or NP hard.
Publisher
Cambridge University Press (CUP)
Reference20 articles.
1. On the Structure of Polynomial Time Reducibility
2. Compositional semantics for a language of imperfect information
3. [20] Walkoe W. , Finite partially-ordered quantification, this JOURNAL, vol. 35 (1940), pp. 535–555.
4. [12] Hintikka J. and Sandu G. , Game-theoretical semantics, Handbook of logic and language (J. F. A. K. van Benthem and A. ter Meulen, editors), North Holland, Amsterdam, 1997, pp. 361–481.
5. Existential second-order logic over graphs
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献