Abstract
Let (Ω,Σ,μ) be a finite measure space and X a Banach space. Denote by L1 (μ,X) the Banach space of (equivalence classes of) μ-strongly measurable X-valued Bochner integrable functions f:Ω→X normed byThe problem of characterizing the relatively weakly compact subsets of L1(Ω, X) remains open. It is known that for a bounded subset of L1(μ, X) to be relatively weakly compact it is necessary that the set be uniformly integrable; recall that K ⊆ L1, (μ, X) is uniformly integrable whenever given ε >0 there exists δ > 0 such that if μ (E) ≦ δ then ∫E∥f∥ dμ ≦ δ, for all f ∈ K. S. Chatterji has noted that in case X is reflexive this condition is also sufficient [4]. At present unless one assumes that both X and X* have the Radon-Nikodym Property (see [1]), a rather severe restriction which, for purposes of potential applicability, is tantamount to assuming reflexivity, no good sufficient conditions for weak compactness in L1(μ, X) exist. This note puts forth such sufficient conditions; the basic tool is the recent factorization method of W. J. Davis, T. Figiel, W. B. Johnson and A. Pelczynski [3].
Publisher
Cambridge University Press (CUP)
Reference9 articles.
1. Sur Les Applications Lineaires Faiblement Compactes D'Espaces Du
Type C(K)
2. 4. Diestel J. and Uhl J. J. , Theory of vector measures, to appear.
3. On weak compactness in spaces of vector-valued measures and Bochner integrable functions in connection with the Radon-Nikodym property of Banach spaces;Batt;Rev, Roumaine Math. Pures Appl.,1974
4. Equicontinuous sets of measures and applications to Vitali's integral convergence theorem and control measures
5. Factoring weakly compact operators
Cited by
83 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献