Author:
Crabb M. J.,McGregor C. M.
Abstract
For an element a of a unital Banach algebra A with dual space A′, we define the numerical range V(a) = {f(a):f ∊ A′, ∥f∥ = f(1) = 1}, and the numerical radius v(a) = sup{⃒z⃒:z ∊ V(a)}. An element a is said to be Hermitian if V(a) ⊆ ℝ ,equivalently ∥exp (ita)∥ = 1(t ∊ ℝ). Under the condition V(h) ⊆ [-1, 1], any polynomial in h attains its greatest norm in the algebra Ea[-1,1], generated by an element h with V(h) = [-1, 1].
Publisher
Cambridge University Press (CUP)
Reference7 articles.
1. The Banach algebra generated by a derivation;Sinclair;Operator Theory: Adv. Appl.,1984
2. Un calcul fonctionnel de class C1 pour les operateurs pre-hermitiens d'un espace de Banach;Baillet;C.R. Acad. Sci. Paris, Ser A,1976
3. The Banach Algebra Generated by a Hermitian Operator
4. Numerical ranges of powers of hermitian elements
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献