Author:
Crabb M. J.,McGregor C. M.
Abstract
An element k of a unital Banach algebra A is said to be Hermitian if its numerical rangeis contained in ℝ; equivalently, ∥eitk∥ = 1(t ∈ ℝ)—see Bonsall and Duncan [3] and [4]. Here we find the largest possible extent of V(kn), n ∈ ℕ, given V(k) ⊆ [−1, 1], and so ∥k∥ ≤ 1: previous knowledge is in Bollobás [2] and Crabb, Duncan and McGregor [7]. The largest possible sets all occur in a single example. Surprisingly, they all have straight line segments in their boundaries. The example is in [2] and [7], but here we give A. Browder's construction from [5], partly published in [6]. We are grateful to him for a copy of [5], and for discussions which led to the present work. We are also grateful to J. Duncan for useful discussions.
Publisher
Cambridge University Press (CUP)
Reference10 articles.
1. Numerical Ranges II
2. 5. Browder A. , States, Numerical ranges, etc., Proc. Brown Informal analysis Seminar, 1969.
3. Some extremal problems in the theory of numerical ranges
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Polynomials in a hermitian element;Glasgow Mathematical Journal;1988-05