Abstract
The use of graphs in the study of groups is well-established. In this paper, we wish to indicate how certain graph-like objects may be used in a similar way. A diagram is a pseudograph which may have some free edges, i.e. edges with just one end.
Publisher
Cambridge University Press (CUP)
Reference15 articles.
1. Subgroups of the classical modular group;Millington;J. London Math. Soc.,1970
2. �ber einen Satz von Dey und die Modulgruppe
3. Subgroups of the (2,3,7) triangle group
4. An extension of F. Klein's level concept;Wohlfahrt;Illinois J. Math.,1964
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The Cayley Graph of Neumann Subgroups;Results in Mathematics;2021-04-11
2. Free products and wild nearfields à la B. H. Neumann and Hans Zassenhaus;Forum Mathematicum;2014-01-01
3. Geometry of Neumann subgroups;Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics;1989-12
4. Level and index in the modular group;Proceedings of the Royal Society of Edinburgh: Section A Mathematics;1984
5. Some uses of coset graphs;Groups — Korea 1983;1984