Abstract
AbstractAll Cayley representations of the distant graph $$\Gamma _{\mathbb Z}$$
Γ
Z
over integers are characterized as Neumann subgroups of the extended modular group. Possible structures of Neumann subgroups are revealed and it is shown that every such structure can be realized.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Mathematics (miscellaneous)
Reference16 articles.
1. Blunck, A., Havlicek, H.: The connected components of the projective line over a ring. Adv. Geom. 1, 107–117 (2001)
2. Blunck, A., Havlicek, H.: On distant-isomorphisms of projective lines. Aequ. Math. 69, 146–163 (2005)
3. Blunck, A., Havlicek, H.: Radical parallelism on projective lines and non-linear models of affine spaces. Math. Pannon. 14, 113–127 (2003)
4. Blunck, A., Herzer, A.: Kettengeometrien-Eine Einführung. Shaker, Aachen (2005)
5. Brenner, J.L., Lyndon, R.C.: Nonparabolic Subgroups of the Modular Group. J. Algebra 77, 311–322 (1982)