Abstract
Let $\unicode[STIX]{x1D706}$ denote the Liouville function. The Chowla conjecture, in the two-point correlation case, asserts that $$\begin{eqnarray}\mathop{\sum }_{n\leqslant x}\unicode[STIX]{x1D706}(a_{1}n+b_{1})\unicode[STIX]{x1D706}(a_{2}n+b_{2})=o(x)\end{eqnarray}$$ as $x\rightarrow \infty$, for any fixed natural numbers $a_{1},a_{2}$ and nonnegative integer $b_{1},b_{2}$ with $a_{1}b_{2}-a_{2}b_{1}\neq 0$. In this paper we establish the logarithmically averaged version $$\begin{eqnarray}\mathop{\sum }_{x/\unicode[STIX]{x1D714}(x)<n\leqslant x}\frac{\unicode[STIX]{x1D706}(a_{1}n+b_{1})\unicode[STIX]{x1D706}(a_{2}n+b_{2})}{n}=o(\log \unicode[STIX]{x1D714}(x))\end{eqnarray}$$ of the Chowla conjecture as $x\rightarrow \infty$, where $1\leqslant \unicode[STIX]{x1D714}(x)\leqslant x$ is an arbitrary function of $x$ that goes to infinity as $x\rightarrow \infty$, thus breaking the ‘parity barrier’ for this problem. Our main tools are the multiplicativity of the Liouville function at small primes, a recent result of Matomäki, Radziwiłł, and the author on the averages of modulated multiplicative functions in short intervals, concentration of measure inequalities, the Hardy–Littlewood circle method combined with a restriction theorem for the primes, and a novel ‘entropy decrement argument’. Most of these ingredients are also available (in principle, at least) for the higher order correlations, with the main missing ingredient being the need to control short sums of multiplicative functions modulated by local nilsequences. Our arguments also extend to more general bounded multiplicative functions than the Liouville function $\unicode[STIX]{x1D706}$, leading to a logarithmically averaged version of the Elliott conjecture in the two-point case. In a subsequent paper we will use this version of the Elliott conjecture to affirmatively settle the Erdős discrepancy problem.
Publisher
Cambridge University Press (CUP)
Subject
Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Analysis
Reference33 articles.
1. [31] T. Tao , ‘Equivalence of the logarithmically averaged Chowla and Sarnak conjectures’. Preprint, 2016, arXiv:1605.04628.
2. The ergodic and combinatorial approaches to
Szemerédi’s theorem
3. [28] P. Sarnak , ‘Three lectures on the Möbius function randomness and dynamics’, 2010, publications.ias.edu/sarnak/paper/506.
4. [25] H. Montgomery , Ten lectures on the interface between analytic number theory and harmonic analysis, CBMS Regional Conference Series in Mathematics, 84 (American Mathematical Society, Providence, RI, 1994). Published for the Conference Board of the Mathematical Sciences, Washington, DC.
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献