A dynamic spatial model of conflict escalation

Author:

BAUDAINS P.,FRY H.M.,DAVIES T.P.,WILSON A.G.,BISHOP S.R.

Abstract

In both historical and modern conflicts, space plays a critical role in how interactions occur over time. Despite its importance, the spatial distribution of adversaries has often been neglected in mathematical models of conflict. In this paper, we propose an entropy-maximising spatial interaction method for disaggregating the impact of space, employing a general notion of ‘threat’ between two adversaries. This approach addresses a number of limitations that are associated with partial differential equation approaches to spatial disaggregation. We use this method to spatially disaggregate the Richardson model of conflict escalation, and then explore the resulting model with both analytical and numerical treatments. A bifurcation is identified that dramatically influences the resulting spatial distribution of conflict and is shown to persist under a range of model specifications. Implications of this finding for real-world conflicts are discussed.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. “Neuroscience” models of institutional conflict under fog, friction, and adversarial intent;The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology;2022-04-25

2. Scaling theory of armed-conflict avalanches;Physical Review E;2020-10-28

3. Evolution and control of artificial superintelligence (ASI): a management perspective;Journal of Advances in Management Research;2019-11-21

4. Spatial interaction and security: a review and case study of the Syrian refugee crisis;Interdisciplinary Science Reviews;2019-10-02

5. The Future of Urban Modelling;Applied Spatial Analysis and Policy;2018-05-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3