Asymptotic solutions of the Helmholtz equation: Generalised Friedlander–Keller ray expansions of fractional order

Author:

TEW R. H.

Abstract

Applications of a WKBJ-type ‘ray ansatz’ to obtain asymptotic solutions of the Helmholtz equation in the high-frequency limit are now standard and underpin the construction of ‘geometrical optics’ ray diagrams in many electromagnetic, acoustic and elastic reflection, transmission and other scattering problems. These applications were subsequently extended by Keller to include other types of rays – called ‘diffracted’ rays – to provide an accessible and impressively accurate theory which is relevant in wide-ranging sets of circumstances. Friedlander and Keller then introduced a modified ray ansatz to extend yet further the scope of ray theory and its applicability to certain other classes of diffraction problems (tangential ray incidence upon an obstructing boundary, for instance) and did so by the inclusion of an extra term proportional to a power of the wave number within the exponent of the initial ansatz. Our purpose here is to generalise this further still by the inclusion of several such terms, ordered in a natural sequence in terms of strategically chosen fractional powers of the large wave number, and to derive a systematic sequence of boundary value problems for the coefficient phase functions that arise within this generalised exponent, as well as one for the leading-order amplitude occurring as a pre-exponential factor. One particular choice of fractional power is considered in detail, and waves with specified radially symmetric or planar wavefronts are then analysed, along with a boundary value problem typifying two-dimensional radiation whereby arbitrary phase and amplitude variations are specified on a prescribed boundary curve. This theory is then applied to the scattering of plane and cylindrical waves at curved boundaries with small-scale perturbations to their underlying profile.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics

Reference18 articles.

1. Diffraction at a Curved Grating: Approximation by an Infinite Plane Grating

2. Uniform asymptotic theory of creeping waves

3. Uniform asymptotic theory of diffraction at an interface;Rulf;Commun. Pure Appl. Math,1968

4. Solution of the problem of propagation of electromagnetic waves along the Earth’s surface by the method of the parabolic equation;Leontovich;J. Phys,1945

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3