Reflection and transmission of high-frequency acoustic, electromagnetic and elastic waves at a distinguished class of irregular, curved boundaries

Author:

Radjen Anthony1,Gradoni Gabriele1,Tew Richard1

Affiliation:

1. School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK

Abstract

Abstract Reflection and transmission phenomena associated with high-frequency linear wave incidence on irregular boundaries between adjacent acoustic or electromagnetic media, or upon the irregular free surface of a semi-infinite elastic solid, are studied in two dimensions. Here, an ‘irregular’ boundary is one for which small-scale undulations of an arbitrary profile are superimposed upon an underlying, smooth curve (which also has an arbitrary profile), with the length scale of the perturbation being prescribed in terms of a certain inverse power of the large wave-number of the incoming wave field. Whether or not the incident field has planar or cylindrical wave-fronts, the associated phase in both cases is linear in the wave-number, but the presence of the boundary irregularity implies the necessity of extra terms, involving fractional powers of the wave-number in the phase of the reflected and transmitted fields. It turns out that there is a unique perturbation scaling for which precisely one extra term in the phase is needed and hence for which a description in terms of a Friedlander–Keller ray expansion in the form as originally presented is appropriate, and these define a ‘distinguished’ class of perturbed boundaries and are the subject of the current paper.

Funder

University of Nottingham

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics

Reference10 articles.

1. Diffraction by slender bodies;Engineer;Eur. J. Appl. Math.,1998

2. Asymptotic expansions of solutions of $\left ({\mathbf{\nabla }}^2+{\mathrm{k}}^2\right )\mathrm{u}=0$;Friedlander;Comm. Pure Appl. Math.,1955

3. The propagation of Rayleigh waves over curved surfaces at high frequency;Gregory;Proc. Cambridge Philos. Soc.,1970

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3