Insight into rime ice accretion on an aircraft wing and corresponding effects on aerodynamic performance

Author:

Cao Y.,Huang J.,Xu Z.,Yin J.

Abstract

ABSTRACTA method based on the Eulerian two-phase flow theory to numerically simulate three-dimensional rime ice accretions on an aircraft wing is presented in this paper. The governing equations for supercooled droplet motion under Eulerian framework are established using the droplet pseudo-fluid model. A permeable wall boundary condition is proposed to simulate the phenomenon of droplets impinging on the wing in solving the governing equations for droplets. The local droplet collection efficiency is readily obtained from the droplet flowfield solution in the control volume adjacent to the wing surface. The rime ice accretion can be simulated under the assumption that the droplets freeze immediately as they impinge on the wing surface since the environment temperature is low enough (typically below –15°C). A method to build the ice shape is proposed based on the assumption that ice grows in the direction normal to the wing surface. The rime ice accretion on a GLC-305 swept wing model under some specific conditions has been simulated to validate the present method. Furthermore, different flight conditions, namely, different angles of attack and different angles of sideslip, have been dealt with to investigate their effects on rime ice accretion as well as the corresponding aerodynamic effects.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An adaptive approach for modelling ice accretion on aircraft;Progress in Computational Fluid Dynamics, An International Journal;2023

2. Performance analysis of NACA2411 ice accreted original and optimized airfoils;INTERNATIONAL CONFERENCE ON MATERIALS, MANUFACTURING AND MACHINING 2019;2019

3. Drop “impact” on an airfoil surface;Advances in Colloid and Interface Science;2018-06

4. Aircraft icing: An ongoing threat to aviation safety;Aerospace Science and Technology;2018-04

5. Development and Applications of a Coupled Particle Deposition—Dynamic Mesh Morphing Approach for the Numerical Simulation of Gas Turbine Flows;Journal of Engineering for Gas Turbines and Power;2017-10-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3