Author:
Cao Y.,Zhang Q.,Sheridan J.
Abstract
Abstract
Based on two-phase flow theory, an Eulerian method to simulate rime ice accretions on an aerofoil has been developed. The SIMPLE (semi-implicit method for pressure linked equations) algorithm on a collocated grid is employed to solve the governing equations for the airflow. In order to simulate droplets impinging on an aerofoil, a permeable wall is proposed to solve the governing equations for supercooled droplets. The collection efficiency and impingement limits are obtained from the droplets’ flowfield. The process of ice accretion is simulated using the assumption that ice accumulates layer-by-layer and the ice shape is predicted with the assumption that ice grows in the direction normal to the aerofoil surface. The rime ice accretions on a NACA0012 aerofoil at 0° and 4° angles-of-attack have been investigated and there is agreement between the simulated results and previously published experimental data. The change of the pressure coefficient along the iced aerofoil is also analysed.
Publisher
Cambridge University Press (CUP)
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献